Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1.
نویسندگان
چکیده
Bacteriophage T7 encodes an essential inhibitor of the Escherichia coli host RNA polymerase (RNAP), the product of gene 2 (Gp2). We determined a series of X-ray crystal structures of E. coli RNAP holoenzyme with or without Gp2. The results define the structure and location of the RNAP σ(70) subunit domain 1.1(σ(1.1)(70)) inside the RNAP active site channel, where it must be displaced by the DNA upon formation of the open promoter complex. The structures and associated data, combined with previous results, allow for a complete delineation of the mechanism for Gp2 inhibition of E. coli RNAP. In the primary inhibition mechanism, Gp2 forms a protein-protein interaction with σ(1.1)(70), preventing the normal egress of σ(1.1)(70) from the RNAP active site channel. Gp2 thus misappropriates a domain of the RNAP holoenzyme, σ(1.1)(70), to inhibit the function of the enzyme.
منابع مشابه
Structure of Escherichia coli RNA polymerase holoenzyme at last.
Much of the mechanistic foundations of our knowledge of regulation of gene expression at the transcriptional level have been provided by Escherichia coli and its phages. E. coli RNA polymerase (EcoRNAP) is a multisubunit enzyme composed of a catalytically active core (β′βα2ω); subunits that are evolutionarily related to β′, β, α, and ω are present in DNA-dependent RNAPs of all organisms. In bac...
متن کاملStructural and Mechanistic Basis for the Inhibition of Escherichia coli RNA Polymerase by T7 Gp2
The T7 phage-encoded small protein Gp2 is a non-DNA-binding transcription factor that interacts with the jaw domain of the Escherichia coli (Ec) RNA polymerase (RNAp) β' subunit and inhibits transcriptionally proficient promoter-complex (RPo) formation. Here, we describe the high-resolution solution structure of the Gp2-Ec β' jaw domain complex and show that Gp2 and DNA compete for binding to t...
متن کاملSubstitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised
The Escherichia coli-infecting bacteriophage T7 encodes a 7 kDa protein, called Gp2, which is a potent inhibitor of the host RNA polymerase (RNAp). Gp2 is essential for T7 phage development. The interaction site for Gp2 on the E. coli RNAp is the β' jaw domain, which is part of the DNA binding channel. The binding of Gp2 to the β' jaw antagonizes several steps associated with interactions betwe...
متن کاملFull shut-off of Escherichia coli RNA-polymerase by T7 phage requires a small phage-encoded DNA-binding protein
Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the bacterial RNA polymerase (RNAP) by the 7 kDa T7 protein Gp2. We describe the identification and functional and structural characterisation of a novel 7 kDa T7 protein, Gp5.7, which adopts a winged helix-turn-helix-like structure and specifically represses transcription initiation from host RNAP-dependen...
متن کاملT7 phage protein Gp2 inhibits the Escherichia coli RNA polymerase by antagonizing stable DNA strand separation near the transcription start site.
Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the host RNA polymerase (RNAP)--a multi-subunit enzyme responsible for gene transcription--by a small ( approximately 7 kDa) phage-encoded protein called Gp2. Gp2 is also a potent inhibitor of E. coli RNAP in vitro. Here we describe the first atomic resolution structure of Gp2, which reveals a distinct run ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 49 شماره
صفحات -
تاریخ انتشار 2013